3.2377 \(\int \frac {1}{\sqrt {a+b x+c x^2}} \, dx\)

Optimal. Leaf size=36 \[ \frac {\tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c}} \]

[Out]

arctanh(1/2*(2*c*x+b)/c^(1/2)/(c*x^2+b*x+a)^(1/2))/c^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 36, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {621, 206} \[ \frac {\tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[a + b*x + c*x^2],x]

[Out]

ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])]/Sqrt[c]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx &=2 \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )\\ &=\frac {\tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 34, normalized size = 0.94 \[ \frac {\log \left (2 \sqrt {c} \sqrt {a+b x+c x^2}+b+2 c x\right )}{\sqrt {c}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[a + b*x + c*x^2],x]

[Out]

Log[b + 2*c*x + 2*Sqrt[c]*Sqrt[a + b*x + c*x^2]]/Sqrt[c]

________________________________________________________________________________________

fricas [A]  time = 0.75, size = 106, normalized size = 2.94 \[ \left [\frac {\log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} - 4 \, \sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {c} - 4 \, a c\right )}{2 \, \sqrt {c}}, -\frac {\sqrt {-c} \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right )}{c}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(-8*c^2*x^2 - 8*b*c*x - b^2 - 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*c)/sqrt(c), -sqrt(-c)*
arctan(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x + a*c))/c]

________________________________________________________________________________________

giac [A]  time = 0.21, size = 36, normalized size = 1.00 \[ -\frac {\log \left ({\left | -2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} \sqrt {c} - b \right |}\right )}{\sqrt {c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

-log(abs(-2*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*sqrt(c) - b))/sqrt(c)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 30, normalized size = 0.83 \[ \frac {\ln \left (\frac {c x +\frac {b}{2}}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{\sqrt {c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x^2+b*x+a)^(1/2),x)

[Out]

ln((c*x+1/2*b)/c^(1/2)+(c*x^2+b*x+a)^(1/2))/c^(1/2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more details)Is 4*a*c-b^2 zero or nonzero?

________________________________________________________________________________________

mupad [B]  time = 1.09, size = 29, normalized size = 0.81 \[ \frac {\ln \left (\frac {\frac {b}{2}+c\,x}{\sqrt {c}}+\sqrt {c\,x^2+b\,x+a}\right )}{\sqrt {c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*x + c*x^2)^(1/2),x)

[Out]

log((b/2 + c*x)/c^(1/2) + (a + b*x + c*x^2)^(1/2))/c^(1/2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {a + b x + c x^{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral(1/sqrt(a + b*x + c*x**2), x)

________________________________________________________________________________________